Kas iš tikrųjų yra Paslėptas Markovo modelis

Įžanga

Truputi pamankštinęs rankas prie Paslėpto Markovo modelio, galiu pasidalinti ne teoriniais samprotavimas apie nagrinėjamą modelį, o apie konkretų įrankį, kuris veikia ir veikia pakankamai gerai.

Paslėptas Markovo Modelis ir kiti klasifikatoriai

Jeigu padaryti prielaidą, kad Paslėptas Markovo Modelis (PMM) yra klasifikatorius, tuomet palyginus su kitais klasifikatoriais – mes turime labai galingą įrankį.

Pradėkime nuo NaiveBayes klasifikatoriaus, kuris yra labai paprastas – n dimensijų Gauso pasiskirstymas. Kai gauname tašką erdvėje – tiesiog pažiūrime kiekvieno cluster tikimybes ir išrenkam tą cluster, kuris turi didžiausią tikimybę. Paprasta, greita ir pigu. Tačiau kas nutinka, kai du Gauso pasiskirstymai yra arti vienas kito, o taškai iš šaltinio gaunami tik per delta skirtumą tarp dviejų pasiskirstymų – klasifikatorius mėtysis tarp vieno ir kito cluster. Taip mes gauname labai mažą accuracy ir presition.

Support Vector Machine yra kiek sudėtingesnis variantas. SVM’as ieško papildomų dimensijų duomenims atskirti. Tai ypač pagelbėja, kai duomenis linijiniu būdu atskirti tiesiog nėra įmanoma. Geras pavyzdys – naudojant polynomial kernel trick. Pagrindinis SVM darbo arklys yra radial basis function. Tai tas pats Gausas. Mano praktikos metu, SVM’as tik truputi geriau dirbo, negu NaiveBayes klasifikatorius, o kaikuriais atvėjais – net blogiau. Dirbtinio intelekto sistemose, visgi, daug kas priklauso nuo application. Reikia išnagrinėti kokias savybes signalas turi savyje, ką duoda dimensijų mažinimas.

PMM turi vieną labai didelį pranašumą, palyginus su kitais nagrinėtais klasifikatoriais – jis turi savyje laiko informaciją. Matematiškai šnekant, tai kai mes turime du duomenų cluster, kurių variacijos kertasi – mes virš dviejų variacijų galime aprašyti dar vieną variacija, kuri aprašo įvykių tikimybes, kurias atspindi clusters. Taip galima kontroliuoti sąlygas, kurios aprašo įvykio pasikeitimą.

Jeigu nustatyti, kad perėjimo tikimybė tarp vieno ir kito įvykio yra labai maža, tai nors, jeigu ir naujas duomenų taškas bus ant kito Gauso pasiskirstymo – klasifikatorius vistiek neskubės persijungti prie kito įvykio.

Paprastas klasifikatorius

Pagerintas (PMM) klasifikatorius

Išvados

Paslėptas Markovo Modelis yra fantastiškas matematinis įrankis. Skirtingai nuo kitų klasifikatorių, jame lengvai gali būti saugoma bet kokia euristinė informacija apie nagrinėjamus duomenų clusters.

Advertisements